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Total export flux =B =B1 + B2 + B3 = 60 Tmol/yr

The Earth Sciences Box Modelling Toolkit (ESBMTK) provides several python Boudreau et al. (2010) use a modified Harvardton-Bear 3-box model (Sarmiento &

classes (e.g., Air-Sea gas exchange, seawater chemistry, hypsometry, etc.) which

Organic matter

> BNS = 19.1 Tmol/yr Toggweiler, 1984). Here we re-implement their model using the ESBMTK framework,

BNS = app z02s00 and then add our new classes to test the implementation of our new classes against

Ap

simplify typical box-modelling tasks in the earth sciences.

* - their results.
w

We aim to extend the ESBMTK framework with modules which describe
processes relevant to marine carbonate chemistry. This includes functions to
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If the rates of CO, solution/outgassing, organic matter production, and . pupersat _p [
carbonate precipitation are known, ESBMTK can model the concentrations of the B
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conservative seawater properties of dissolved organic carbon (DIC) and total
alkalinity (TA).

However, carbonate dissolution (and possibly carbonate precipitation) depends
on and affects the carbonate ion concentration. In the first step, we calculate the
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various dissolved carbon species, Sediment
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dissolution
_ : 2-
DIC = [COz]aq* + [HCO3 ] + [CO3 ] Figure 4. Comparison between the ESBMTK model results and digitized model results from Boudreau

_ 7. : : et al. (2010). (a) Carbon uptake by the ocean and atmosphere (b) Partial pressure of CO2 in the
= + +
TA [HCO3 ] Z[COB |+ minor species atmosphere (c) Dissolution fluxes within the deep box (See Fig. 2) (d) pH (e) Saturation state (f)

using the iterative approach of Follows et al. (2006). The carbonate ion e S | Positions of the critical horizons in the deep box: zsat, calcite saturation horizon; zcc, carbonate

: : : : : compensation depth; zsnow, snowline
concentration is then used to calculate the following depth intervals using the P P

equations of Boudreau et al. (2010) (see equations in Fig. 2). A(zzzsu) A.(z.zzm)
Sl 24 ' AD
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< AD > One of the major challenges faced was matching model output values with the

e zsat: The depth where the CaCO, <> Ca®* + HCO," is in equilibrium

e zcc: The depth where the rate of CaCO, dissolution is equal to the export flux _ -
results in Boudreau et al. (2010). Fortunately, we were able to access the original

model code provided by Boudreau et al. (2010) which helped with debugging and
fine-tuning model parameters, allowing us to attain reasonable results (See Fig. 4).

of CaCO3 Figure 2. Diagram showing ocean schematic with horizon depths and calcite flux movements

: for the d box.
e zsnow: The depth where sediments become carbonate-free or the deep box

Once these depths are known, we use the parameterizations of Boudreau et Another challenge was the extension of the framework itself which required new

| Figure 3. The 4-box model . . - . o ,
| Ocean-Atmosphere System for the carbonate system of functions and also editing of pre-existing functions within multiple classes of
Fig. 2) and update the concentrations of TA and DIC accordingly. Becaptars the oceans in ESBMTK and ESBMTK. Consistent communication via Google Meets and Discord, as well as Git

| 5 the associated flux
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Figure 1. Figure from Zeebe & Wolf-Gladrow (2001). T l S Keys divided into 4 boxes for low Debugging new code also required tedious amounts of testing but major bugs were

; High Latitude Surface
/ The arrows indicate how DIC and TA are affected by 2'C,17.6 bar (e latitude  surface,  high resolved by reducing the complexity and isolating the code.
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o different processes. Constant levels of dissolved CO,
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al. (2010) to calculate the respective burial/dissolution fluxes (see equations in

enabled us to effectively collaborate on the code together simultaneously.
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