

Introduction

Climate warming and atmospheric CO_2 enrichment provide a competitive advantage to plants that do not invest resources in a carbon concentrating (CCM) mechanism to reduce photosynthetic inhibition [1].

Crassulacean acid metabolism (CAM) plants can deactivate their CCMs under high CO₂ concentrations, reducing their fitness in arid environments relative to C_3 photosynthetic plants [1].

CAM plants' response to global change can be evaluated through comparative analysis of CCM strength via carbon isotope ratios ($\delta^{13}C$) of photosynthetic tissue [2]. Starch pool δ^{13} C include only recently assimilated carbon and thus more accurately represent CAM activity than bulk tissue δ^{13} C, especially in intermediate C_3 +CAM plants [2].

We assess the efficacy of starch extraction for δ^{13} C analysis through study of a C_3 plant, an obligate CAM plant, and an intermediate C_3 +CAM plant.

Methods

Leaves of the C_3 plant Alternanthera sessilis, leaves of the obligate CAM plant Kalanchoë daigremontiana, and leaves and stems of the C₃+CAM plant *Bulnesia retama* were sampled in the late afternoon of sunny days [2,3,4]. Samples were dried then treated with methanol and chloroform to isolate soluble starch [2]. Starch was boiled in solution with diH₂O until gelatinized, then treated with α -amylase to convert the starch to sugars [2]. $\delta^{13}C$ of the isolated sugars and of dried bulk tissue from all three species were determined at the Washington State University Stable Isotope Core Laboratory.

Starch Carbon Isotope Ratios for Comparing the Strength of CAM Photosynthesis Charlie S. Olsen and Rowan F. Sage Department of Ecology and Evolutionary Biology, University of Toronto

Results

Starch δ^{13} C are significantly less negative than bulk tissue δ^{13} C in Bulnesia retama (C₃+CAM) leaves and stems.

There is no significant difference between starch and bulk tissue δ^{13} C in the leaves of Alternanthera sessilis (C₃) and Kalanchoë daigremontiana (CAM).

Discussion

CCMs discriminate less against ${}^{13}CO_2$ than the C₃ cycle, making δ^{13} C useful in differentiating between C₃ and CAM plants [4].

 $C_3 \, \delta^{13}$ C range: [-21‰, -32‰]

The δ^{13} C difference between bulk leaf and starch samples in Bulnesia retama (C_3 +CAM) is due to CCM activity in addition to exclusion of post-fixation isotope discrimination in the starch pool [4].

The small difference between bulk leaf and starch δ^{13} C in Kalanchoë daigremontiana (CAM) can be attributed in part to C₃ cycle activity in CAM photosynthesis phases II and IV [1,unpublished data].

Starch extraction for $\delta^{13}C$ analysis is a more accurate method for assessing relative CAM strength in C_3 +CAM plants than use of bulk tissue, which will be useful in assessing both CAM loss under elevated atmospheric CO₂ and CAM evolutionary intermediacy.

Literature Cited

1. Ehleringer JR and Osmond CB (1989) Stable Isotopes. In Pearcy RW, Ehleringer JR, Mooney HA, Runde PW (eds) Plant Physiological Ecology: Field methods and instrumentation, pp 281-300. Chapman and Hall, London 2. Adachi S, Stata M, Martin DG, Cheng S, Liu H, Zhu X-G, Sage RF (2023) The evolution of C₄ photosynthesis in *Flaveria* (Asteraceae): insights from the *Flaveria linearis* complex. Plant Physiol 191: 233-251 3. Stata M, Sage TL, Rennie TD, Khoshravesh R, Sultmanis S, Khaikin Y, Ludwig M, **Sage RF** (2014) Mesophyll cells of C_4 plants have fewer chloroplasts than those of closely

related C₃ plants. Plant Cell Environ 37: 2587-2600 4. Mok D, Leung A, Searles P, Sage TL, Sage RF (In Press) CAM photosynthesis in Bulnesia retama (Zygophyllaceae), a non-succulent desert shrub from South America. Ann Bot

Acknowledgements

Stem

Leaf

Strong CAM δ¹³C range: [-10‰, -20‰] C_3 +CAM δ^{13} C range: [-20‰, -25‰]