Characterizing First Year and Multi Year Sea Ice using NESOSIM
Erin Sauvé, Paul Kushner, Alex Cabaj

Introduction and Objectives
- Arctic sea ice regulates planetary albedo, and its annual melt-freeze cycles affect the climate across the polar region
- The last 30 years has seen a regime shift from multi-year to first-year dominated sea ice
- First-year ice (FYI) and multi-year ice (MYI) often differ in some physical properties, affecting their melt patterns and resilience to temperature change
- Snow falling on sea ice can affect the ice's growth, its resistance to melt, and its albedo, but is difficult to observe, so models are used
- Goal: characterize patterns in snow on sea ice across regions and ice ages

NESOSIM is a two-layer snow on sea ice model. Snow falls onto the upper layer, and is transferred to the lower layer through densification by winds (wind pack). Snow can also be lost from the upper layer when blown off into the air (atmosphere loss) or open water (lead loss).

Snow Water Equivalent
- While the snow water equivalent (SWE) is increasing on both FYI and MYI across the Arctic basin over one freeze season, the rate of increase on MYI decreases while the rate on FYI increases. This pattern is consistent across decades.
- Snowfall maps suggest that this could be due to increasing snowfall in predominantly FYI regions (such as Baffin Bay/Davis Strait and Greenland) due to storm track activity later in freeze season

Snow Layers
- In regions that consistently have MYI and FYI, the upper layer of snow has a consistent depth through the freeze season, due to densification process converting upper layer snow to lower layer snow, and snow loss processes.

Data, Methods
- NASA Eulerian Snow on Sea Ice Model (NESOSIM) freeze season (September to April) daily output at 100 km resolution driven by ERA5 snowfall input
- Weekly sea ice age data from the National Snow and Ice Data Centre (NSIDC) regridded from EASE-grid to 100 km resolution NESOSIM grid
- NESOSIM regional mask

NESOSIM is a two-layer snow on sea ice model. Snow falls onto the upper layer, and is transferred to the lower layer through densification by winds (wind pack). Snow can also be lost from the upper layer when blown off into the air (atmosphere loss) or open water (lead loss).

Snow Loss Processes
- FYI's rate of snow accumulation accelerates as the season progresses due to increased storm track activity.
- Despite increased snowfall, the depth of the upper layer is consistent through the season. Snow layers may be better represented with a more complex density model.
- FYI experiences more lead loss than MYI, even when they have comparable atmospheric losses.
- Next steps: examine dependence of these results on uncertain model parameters and reanalysis snowfall input.

Results

Discussion, Next Steps

https://github.com/akpetty/NESOSIM